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Sensitivity computations of eddy viscosity models with
an application in drag computation
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SUMMARY

This paper presents a numerical study of the sensitivity of an eddy viscosity model with respect to
the variation of the eddy viscosity parameter for the two-dimensional driven cavity problem and �ow
around a cylinder. The main objective is to provide a comparison between computing the sensitiv-
ity using sensitivity equation and computing the sensitivity using �nite di�erence methods and also
numerically illustrate the application of the sensitivity computations in improving drag �ow functional.
Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the recent years, parameter sensitivity computations and analysis has become very impor-
tant tools in the analysis of �uid behaviour. They describe the �ow response to the variations
of a parameter and therefore, from the application point of view, they provide an answer to
the primary important purpose of computational �uid dynamics (CFD) analysis in determining
the uncertainties arising from the choice of �ow-related parameters and the accuracy of CFD
predictions.
Numerical investigations are an important tool in studying fundamental aspects of turbulence

and they also can be applied to generate data which can be used to formulate models for
a given �ow geometry. The most straightforward simulation technique is direct numerical
simulation in which all turbulent �ow scales are numerically resolved. Another alternative
simulation technique is called large eddy simulation (LES). The idea of LES is to remove
the small scales of the turbulence by means of a �ltering procedure and to approximate
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the remaining scales numerically. Averaging the Navier–Stokes equations (NSE) a�ects the
reliability of the solution. Therefore, assessing the uncertainty of the applied LES model is
an important issue.
Generally speaking, sensitivity analysis of a physical system is the computation of deriva-

tives of its state variables with respect to parameters upon which the response of the system
explicitly and=or implicitly depends. There are basically two main approaches for numerically
approximating the sensitivities. One is using �nite di�erences and the other is to form an
equation for the designated sensitivity and then numerically solving it. The latter is called the
sensitivity equation method (SEM). SEM is classi�ed into two di�erent methods, the contin-
uous sensitivity equation method (CSEM) and the automatic di�erentiation method (ADM).
This categorization is based on obtaining the discrete sensitivity equation by �rst di�eren-
tiating the state equation and then discretizing or �rst discretizing the state equation then
di�erentiating. CSEM corresponds to ‘di�erentiate then discretize’ and ADM to ‘discretize
then di�erentiate’. In ADM, the discrete sensitivity system is obtained using automatic di�er-
entiation software. To study advantages and disadvantages of these two strategies in detail,
see Reference [1].
Utilizing a �ow solver code, a �nite di�erence quotient is easy to implement. However, it

may not be an e�cient method for computing sensitivities (see for example Reference [2]).
It produces large errors in addition to being computationally expensive in the sense that the
code used for calculating a non-linear �ow has to be run for two di�erent parameter inputs
at the very least (see surveys [1, 2]).
In computing the �ow sensitivity via CSEM, once the �ow is obtained just a linear equation

needs to be solved to get the �ow sensitivity. This can be done using the same program as the
one used for approximating the �ow. Therefore, the use of CSEM is preferable to the use of the
�nite di�erence method. A comparison between these two methods in calculating sensitivity
has been presented for a speci�c forebody design problem by Borggaard, Gunzburger and
their colleagues in Reference [2]. CSEM has been used to compute sensitivities of �ows with
respect to di�erent �ow-related parameters. Much work has been done on this by Borggaard,
Godfrey and others (see the surveys [3–8]).
This paper examines the sensitivity of a subgrid eddy viscosity type of model to the varia-

tions of the eddy viscosity parameter. The subgrid eddy viscosity model is due to Guermont
[9]. A generalization of Guermont’s idea for convection di�usion problem is introduced by
Layton in Reference [10]. A natural extention of Layton’s model in Reference [10] to time-
dependent NSE and the connection of the model to the standard formulation of a variational
multiscale method is studied in Reference [11]. A formulation of this model is given below.
Call w and p the resulting approximation of the large eddy velocity and pressure and let

P′= I − P, where P is an L2-orthogonal projection on a subspace of L2(�) [10].
Let �⊂Rd; d=2 or 3, be a bounded, simply connected domain with polygonal boundary
@�. We seek w : �× (0; T ]→Rd and pressure �p : �× (0; T ]→R satisfying,

wt + w · ∇w − ��w +∇ �p− �∇ · P′(∇w) =f in �× (0; T ]
∇ · w=0 in �× [0; T ]
w=0 on @�× [0; T ]

w(x; 0) =w0(x) in �

(1)
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Here f, the external force, is in L2(0; T ;L2(�)) (i.e. [
∫ T
0

∫
� |f(t)|2 ds dt]1=2¡∞), �¿0 is the

kinematic viscosity, which is inversely proportional to the Reynolds number Re. In this model
�, the eddy viscosity parameter, is an important parameter whose values vary between 0 and
1 and is proportional to the �lter length scale in LES models. Due to the fact that � in (1)
causes di�erent responses of the �ow, it is natural to explore the sensitivity of the �ow system
and also the uncertainty of some CFD predictions which can be a�ected by changing the �ow
solution with respect to the variation of �.
Considering that the L2-orthogonal projection P is a linear operator, using the chain rule

it is easy to show that the operator P and then P′ commute with di�erentiation with respect
to �. Therefore, sensitivity of the solution (w;p) of system (1) can be computed from the
following sensitivity equation, which is obtained by implicit di�erentiation of (1) with respect
to �:

st + w · ∇s+ s · ∇w − ��s+∇q− �∇ · P′(∇s) =∇ · P′(∇w) in �× (0; T ]
∇ · s=0 in �× [0; T ]
s=0 on @�× [0; T ]

s(x; 0) = s0(x) in �

(2)

where s= @w=@� and q= @ �p=@�. As it can be seen in (2), w appears in the sensitivity equation.
Therefore, to complete the sensitivity analysis we need to couple (2) with (1). A complete
analysis of model (1) and its sensitivity equation (2) in steady-state and time-dependent cases
has been carried out in References [12–14].
This paper presents the numerical study of the �ow sensitivity with respect to the eddy

viscosity parameter on two experiments. We carry out the implementations on two-dimensional
cases. The modi�cations in three dimensions are similar. Our �rst experiment on
two-dimensional driven cavity problem focuses on providing a numerical assessment of com-
puting the sensitivity of (1) via CSEM and forward �nite di�erence (FFD). The purpose of
the second experiment is to test the idea of using the sensitivity in improving the �ow func-
tionals, referring to the work of Anitescu and Layton in Reference [15]. This test has been
performed on two-dimensional �ow around a cylinder for computing the lift and drag. The
test problem chosen in this experiment has been numerically studied by di�erent groups of
scientists [16, 17]. All computations are carried out using an algorithm developed from a new
implicit–explicit time-stepping method introduced in Reference [18].

2. ALGORITHM

This section describes the algorithm for numerically solving Equations (1) and (2). We speci�-
cally explain how the eddy viscosity term in the model (1) and its sensitivity (2) are estimated
in our calculations.
The functional spaces used in this section for w and s, �p and q, P(∇w) and P(∇s) are

de�ned, respectively, as follows:

X h ⊆X =H 1
0 (�)= {v∈L2(�) : ∇v∈L2(�); v=0 on @�}
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Qh ⊆Q=L10(�)=
{
�∈L2(�) :

∫
�
� dx=0

}

LH ⊆L⊆L2(�)2×2 = {v=(vij)2×2 : vij ∈L2(�); i; j=1; 2}
Splitting the operator P′ as I − P in (1) and (2), the variational formulation of these two

equations in X and Q can be rewritten, respectively, as follows:

(wt; v) + (w · ∇w; v) + (�+ �)(∇w;∇v)− ( �p;∇ · v)

− �(P(∇w); P(∇v))= (f; v) (�;∇ · w)=0 (3)

for all v∈X; �∈Q and

(st ; v) + (s · ∇w + w · ∇s; v) + (�+ �)(∇s;∇v)− (q;∇ · v)

− �(P(∇s); P(∇v))= − (∇w;∇v) + (P(∇w);∇v) (�;∇ · s)=0 (4)

for all v∈X; �∈Q.
Let g denote the L2-orthogonal projection of ∇w in (1) or (3). Then by de�nition of

orthogonality g is obtained using an extra equation as follows:

(g− ∇w; l)=0 ∀l∈L
(wt; v) + (w · ∇w; v) + (�+ �)(∇w;∇v)− ( �p;∇ · v)
+ (�;∇ · w)− �(g;∇v)= (f; v) ∀v∈X; �∈Q

(5)

Having w and g from (5), we consider solving the sensitivity equation using the similar
idea for obtaining the L2-orthogonal projection of ∇s as follows:

(G − ∇s; l)=0 ∀l∈L
(st ; v) + (s · ∇w + w · ∇s; v) + (�+ �)(∇s;∇v)− (q;∇ · v)
+ (�;∇ · s)− �(G;∇v)= − (∇w;∇v) + (g;∇v) ∀v∈X; �∈Q

(6)

Remark 2.1
The nature of the L2-orthogonal projection P leads us to consider a multi-scale discretization
for Equations (5) and (6) (see Reference [10]).

In the next step, we develop the time-stepping method introduced in Reference [18] and
apply it to Equations in (5) and (6). The idea of the time-stepping method we consider is
based on computing local and stabilizing terms implicitly and nonlocal and unstabilizing terms
explicitly. In both Equations (5) and (6) the L2-orthogonal projection P accounts for nonlocal
character (i.e. its matrix has a large bandwidth). The advantage of the explicit structure for
the global unstable part in the system of equations is that its action on a given vector is
inexpensive to perform.
Here whn and s

h
n represent w

h(tn) and sh(tn), respectively. Let h and H denote the size of
the �ne and coarse mesh, respectively. Then the following fully discrete scheme is considered

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:381–392



SENSITIVITY COMPUTATIONS OF EDDY VISCOSITY MODELS 385

for implementing a code to approximate the solution of (5) and (6). The equations for the
LES model are given below

(gHn − ∇whn; lH )=0 ∀lH ∈LH
(
whn+1 − whn
�t

; vh
)
+ (whn · ∇whn+1; vh) + (�+ �)(∇whn+1;∇vh)− ( �phn+1;∇ · vh)

+ (�h;∇ · whn+1)− �(gHn ;∇vh)= (fn+1; vh) ∀vh ∈X h; �h ∈Qh

(7)

Thus for the sensitivity, we solve

(GHn − ∇shn; lH )=0 ∀lH ∈LH
(
shn+1 − shn
�t

; vh
)
+ (shn+1 · ∇whn+1 + whn+1 · ∇shn+1; vh) + (�+ �)(∇shn+1;∇vh)

− (qhn+1;∇ · vh) + (�h;∇ · shn+1)− �(GHn ;∇vh)
= − (∇whn+1;∇vh) + (gHn+1;∇vh) ∀vh ∈X h; �h ∈Qh

(8)

3. SENSITIVITY COMPUTATIONS

The goal of this section is �rst to numerically illustrate a comparison of the sensitivity com-
putation via two di�erent strategies. One method uses the discretized sensitivity Equation (8),
and the other uses the forward �nite di�erence

w(�+��)− w(�)
��

by computing the average velocity w from (7) for two inputs �+�� and �. We also present
one of the most important applications of sensitivity in identifying the reliable values of the
eddy viscosity parameter �.
The numerical experiments are performed on the two-dimensional driven cavity prob-

lem [19]. The �ow domain � is [0; 1]× [0; 1]. The upper boundary moves with the velocity
w(t; x; y)= (16x2(1− x2); 0)t . The initial data is chosen to be w(0; x; y)= (3y2 − 2y; 0)t in �.
It is clear that since the initial and boundary conditions for w do not depend on �, we have
zero initial and boundary conditions for the sensitivity s.
We pick X h;Qh and LH to be �nite element space of piecewise polynomials of degree 2,

piecewise linears and piecewise constants, respectively. Sensitivity sh is computed at each
time-step ti through computing wh(ti+1). All computations are carried out with �=0:0001 and
h= 1

36 and the uniform step �t=0:001 for 1000 steps. The program has been implemented
by FreeFem++ [20], which uses the �nite element method for solving PDEs. See Refer-
ences [12–14] for some numerical assessments on the convergence results of (7) and (8) for
the speci�c cavity problem.
Let sSEM and sFFD denote the sensitivity computation via SEM and FFD, respectively. Table I

presents ‖sSEM(t)‖L2(�) and ‖sFFD(t)‖L2(�) for di�erent values of parameter � with ��=0:0001
at times t=0:01; 0:1; 1.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:381–392



386 F. PAHLEVANI

It can be observed that for �60:025, the computed sensitivity in both methods SEM and
FFD agree for small time and are very di�erent at the �nal time. As � takes larger values
than 0.025, sensitivity values via SEM and FFD are close over the whole time interval.
Following Table I, you see the plot of computed sensitivity using both methods for �=0:025

at t=0:01 and t=1. Left plots are obtained from SEM and right plots from FFD. (Figures 1
and 2)
The natural way to compute the sensitivity of the average velocity with respect to the

variation of parameter � is via computing �‖@w=@�‖L∞(0;T ;L2) (note: ‖v(t)‖L∞(0;T ;L2) =
max06t6T ‖v(t)‖2L2(�)). This is because of the fact that

�
@w
@�

≈w(0)− w(�) (9)

Values of �‖sSEM‖L∞(0;T ;L2) and �‖sFFD‖L∞(0;T ;L2) for di�erent values of parameter � for T =1
are listed in Table II. This table demonstrates that the large eddy velocity w is highly sensitive

Table I. Sensitivity via SEM and FFD at di�erent times.

� Time 0.01 0.1 1

0.75 SEM 0.137967 0.132143 0.132229
FFD 0.142969 0.11632 0.116324

0.5 SEM 0.194026 0.173414 0.174014
FFD 0.205607 0.160756 0.160554

0.25 SEM 0.340816 0.301911 0.287039
FFD 0.360893 0.298393 0.276047

0.075 SEM 0.822536 1.15329 0.661375
FFD 0.827503 1.12457 0.649798

0.05 SEM 1.05194 1.75986 0.940254
FFD 1.05532 1.66294 0.838625

0.025 SEM 1.54487 3.39374 75.8015
FFD 1.55716 3.03512 1.75201

0.0075 SEM 3.46636 5.71883 767236
FFD 3.74463 9.35573 21.767

0.005 SEM 5.41812 14.7976 1:66591e + 7
FFD 5.78659 16.292 81.4544

Figure 1. Similarity of sensitivity using SEM (left) and FFD (right) at t=0:01.
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Figure 2. Di�erence of sensitivity computed by SEM (left) and FFD (right) at �nal time.

Table II. Sensitivity values via SEM and FFD for di�erent �.

� �‖sSEM‖L∞(0;T ;L2) �‖sFFD‖L∞(0;T ;L2)

0.75 0.148275 0.129462
0.5 0.13029 0.18623
0.25 0.110736 0.10332
0.075 0.092992 0.088566
0.05 0.094626 0.085014
0.025 1.89503 0.08292
0.0075 5754.27 0.163719
0.005 8:32955e + 4 0.4075515

with respect to the small values of �. As � gets larger, w becomes less sensitive. Table
II shows a small sensitivity using FFD overall with respect to �. Comparing the sensitivity
values in Table II, sensitivities obtained from SEM are close to the ones computed by FFD
for �¿0:025. It can be observed that �‖@w=@�‖L∞(0;T ;L2) follows the same pattern in both
methods. As � becomes large up to 0.075 then �‖@w=@�‖L∞(0;T ;L2) decreases and for �¿0:075,
�‖@w=@�‖L∞(0;T ;L2) starts to increase.
Note that (9) suggests the reliability of an approximated solution to correspond to the lower

values of �‖@w=@�‖L∞(0;T ;L2). In Table II, the lowest sensitivity values using SEM and FFD
appear to be for � in the interval [0:05; 0:075] and [0:025; 0:075], respectively. Thus from both
approximations of sensitivity in Table II the interval [0:05; 0:075] is the reliable interval for �.

Remark 3.1
In the case when the parameter � is small, the computed large eddy velocity w is a more
accurate estimation and therefore it includes more scales in its structure. Ultimately, more
scales are also computed in the sensitivity s and hence to get a more accurate sensitivity for
small �, the sensitivity equation must be solved on a �ner mesh.

4. SENSITIVITY IN DRAG COMPUTATION

In Reference [15], Anitescu and Layton proposed that the approximation of a �ow functional
J (u) can be improved via sensitivity. This idea is based on using the linear approximation to
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J (w(0))= J (u), which yields

J (u)≈ J (w(�))− �J ′(w(�)) · s (10)

The major purpose of this section is to establish whether constructive conclusions in Ref-
erence [15] can be drawn from a numerical test in computing lift and drag functional for the
two-dimensional �ow around a cylinder. Notice that for linear functionals J ′= J and therefore
the approximation (10) is obtained from

J (u; p)≈ J (w; �p)− �J (s; q)= J (w − �s; �p− �q) (11)

Let u=(u1; u2)t and T =4. For the given geometry � shown in Figure 3, consider the
following Navier–Stokes problem,

ut + u · ∇u− ��u+∇p=0 in �× (0; T )
∇ · u=0 in �× (0; T )

u(0; x; y) = (0; 0)t in �

The geometry and the boundary conditions are indicated in the following. The channel height
and width is, respectively, 0:41m and 2:2m. A cylinder with radius 0:05m has been centred
at point (0:2; 0:2).
The boundary and initial conditions are given below:

u1(t; x; 0) = u2(t; x; 0)=0

u1(t; x; 0:41) = u2(t; x; 0:41)=0

u1(t; x; y)|@B = u2(t; x; y)|@B=0
u1(0; x; y) = u2(0; x; y)=0

The out�ow condition is set free, i.e. u is numerically solved on the outlet boundary, and
for 06t64, the in�ow condition is

u1(t; 0; y) =
6

(0:41)2
y(0:41− y) sin

(
�t
4

)

u2(t; 0; y) = 0

inlet outlet

B

(0,0.41)

(0,0) (2.2,0)

(2.2,0.41)

Figure 3. Geometry of 2D-�ow around cylinder.
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Figure 4. Mesh in a channel with size 1
36 and

1
49 .

Table III. Reference values for drag.

� (Re) Drag at T =1 Max. drag Drag at T =3 Drag at T =4

1 (1) 45.0804 63.7703 45.1044 0.016924
0.5 (2) 37.3295 52.8079 37.3521 0.0160216
0.25 (4) 32.708 46.2713 32.7296 0.01527
0.1 (10) 29.1195 41.1958 29.1401 0.0145559
0.01 (100) 25.494 36.0677 25.5134 0.0137471
0.001 (1000) 24.9490 35.29035 24.96835 0.01367345
0.0001 (10 000) 24.82055 35.1186 24.83985 0.01366715

The lift and drag functional for Navier–Stokes equations is given by

J (u; p)=
∮
B
(nx; ny) · [pI − 2�∇su] · a ds (12)

where (nx; ny) denotes the normal vector on the cylinder boundary B directing into the channel,
∇su presents the deformation tensor and is 1

2 (∇u + ∇ut), the unit vector a in the positive
direction of x-axis or negative direction of y-axis yield the drag or lift �ow functional. The
reference value of drag for this test problem is obtained by performing the direct numerical
solution method to a uniform mesh that is of size 1

100 for each side of the channel and of
size 1

121 for around the cylinder (e.g. see Figure 4). Table III indicates the reference values
of drag at time T =1; 2; 3 and 4 for di�erent values of �. Note that the maximum value of
drag occurs at time T =2.
Here we approximate the values in Table III via two approaches. One is by replacing the

large eddy velocity and pressure (w; �p) into (12) for (u; p). Secondly we use the sensitivity
and compute the drag with �p−�q and w−�s for the pressure and velocity using (10) or (11).
The approximated �ow functional for lift and drag using (w; �p) and (w − �s; �p− �q) with

parameter �=0:00125 and a mesh of size 1
49 for the sides of channel and

1
64 for around the

cylinder are listed in Tables IV and V. Table V indicates an improved estimation of drag for
all � at any time. This table specially presents more accurate values for �¡0:1.
Looking to the sensitivity quantities for di�erent values of parameter �, one observes that

�ow is insensitive for �¿0:1. Therefore, the computed drag values using (s; q) shows a small
improvement in comparison to the ones computed using (w; �p). According to Table VI for
small values of � (i.e �¡0:1), the �ow becomes more sensitive and applying sensitivity helps
in obtaining a better improved values of the drag functional.
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Table IV. Lift and drag approximation by large eddy velocity and pressure.

� (Re) Drag at T =1 Max. drag Drag at T =3 Drag at T =4

1 (1) 44.7951 63.3666 44.8188 0.0167302
0.5 (2) 37.0245 52.3764 37.0469 0.0158283
0.25 (4) 32.3981 45.833 32.4195 0.0150842
0.1 (10) 28.8309 40.7875 28.8513 0.0143996
0.01 (100) 25.331 35.6787 25.3505 0.0137419
0.001 (1000) 24.6588 35.0094 24.6782 0.0136678
0.0001 (10 000) 24.5272 34.6832 24.5465 0.0136627

Table V. Lift and drag approximation using sensitivities.

� (Re) Drag at T =1 Max. drag Drag at T =3 Drag at T =4

1 (1) 44.8188 63.4001 44.8425 0.0167311
0.5 (2) 37.0501 52.4125 37.0724 0.0158304
0.25 (4) 32.4274 45.8743 32.4487 0.0150879
0.1 (10) 28.8683 40.8403 28.8887 0.0144059
0.01 (100) 25.5047 36.0829 25.5242 0.0137527
0.001 (1000) 24.9592 35.3113 24.9785 0.0136751
0.0001 (10 000) 24.8339 35.134 24.8532 0.0136676

Table VI. Sensitivity for di�erent values of �.

� �‖w�‖L∞(0;T ;L2)

1 7:19057e− 06
0.5 2:25838e− 05
0.25 6:9098e− 05
0.1 0.000288244
0.01 0.00483735
0.001 0.0155576
0.0001 0.0201101

Figure 4 shows an example of a uniform mesh with size h= 1
36 for the sides of the channel

and h= 1
49 for around the cylinder followed by Figure 5 showing the scaled velocity vector

�eld and the computed sensitivity norm for �=0:0001 on the same mesh.

5. CONCLUSION

Sensitivity of the subgrid eddy viscosity model with respect to the variations of eddy viscos-
ity parameter using two di�erent methods, SEM and FFD, was computed with a �rst-order
implicit–explicit time-stepping scheme for the two-dimensional driven cavity problem. The
numerical comparison between SEM and FFD shows that the approximated sensitivities via

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:381–392
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Figure 5. Velocity vector �eld and sensitivity norm for �=0:0001.

these two strategies are very close in a small time interval. In addition, sensitivity computa-
tions for this experiment with di�erent values of � suggest [0:05; 0:075] as the reliable interval
for values of �.
Our conclusions in the second experiment have been drawn from a numerical test in

computing drag functional for the two-dimensional �ow around a cylinder. This test jus-
ti�es the use of sensitivity as a �rst-order correction term to improve the �ow functional
approximations.

ACKNOWLEDGEMENTS

I would like to express my thanks to Professor Lisa Davis Stanley for her generous support and valuable
comments in improving this paper. The work of this paper is based on the author’s PhD dissertation and
also has been supported by AFOSR grant F49620-03-1-0326 (L. Davis Stanley). I am also very grateful
to Professor Frederic Hecht for helping me out in understanding the performance of FreeFem++.

REFERENCES

1. Gunzburger M. Perspectives in Flow Control and Optimization. SIAM: Philadelphia, PA, 2003.
2. Borggaard J, Burns J, Cli� E, Gunzburger M. Sensitivity Calculations for a 2D, Inviscid, Supersonic Forebody
Problem. SIAM: Philadelphia, PA, 1993; 14–24.

3. Burns J. A sensitivity equation approach to shape optimization in �uid �ows. In Flow Control, Gunzburger M
(ed.). Springer: Berlin, 1995; 49–78 (also appeared as ICASE Report No. 94-8).

4. Borggaard J, Pelletier D, Turgeon E. A continuous sensitivity equation method for �ows with temperature
dependent properties. Proceedings of the 8th AIAA=USAF=NASA=ISSMO Symposium on Multidisciplinary
Analysis and Design, vol. 4821, 2000.

5. Borggaard J, Pelletier D, Turgeon E. Sensitivity and uncertainty analysis for variable property �ows. Proceedings
of the 39th AIAA Aerospace Sciences Meeting and Exhibit, vol. 0140, 2001.

6. Godfrey A, Cli� E. Direct calculation of aerodynamic force derivatives: a sensitivity equation approach.
Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit, vol. 0393, 1998.

7. Godfrey A, Cli� E. Sensitivity equations for turbulent �ows. Proceedings of the 36th AIAA Aerospace Sciences
Meeting and Exhibit, vol. 1060, 2001.

8. Godfrey A, Cli� E, Eppard W. Using sensitivity equations for chemically reacting �ows. Proceedings of the 7th
AIAA=USAF=NASA=ISSMO Symposium on Multidisciplinary Analysis and Optimization, vol. 4805, 1998.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:381–392



392 F. PAHLEVANI

9. Guermond J. Stabilization of Galerkin approximations of transport equations by subgrid modelling. M2AN 1999;
33:1293–1316.

10. Layton W. A connection between subgrid scale eddy viscosity and mixed methods. Applied Mathematics and
Computation 2002; 133:147–157.

11. John V, Kaya S. A �nite element variational multiscale method for the Navier–Stokes equations. SIAM Journal
on Scienti�c Computing 2005; 26:1485–1503.

12. Pahlevani F. Sensitivity analysis of eddy viscosity models. Ph.D. Dissertation, University of Pittsburgh, 2004.
13. Davis SL, Pahlevani F. Semi-implicit schemes for transient Navier–Stokes equations and eddy viscosity models,

2005, submitted.
14. Pahlevani F. Parameter sensitivity analysis of eddy viscosity models for Navier–Stokes equations, 2005,

submitted.
15. Anitescu M, Layton W. Sensitivities in large eddy simulation and improved estimates of turbulent �ow

functionals, Mathematics and Computer Science Division, Argonne National Laboratory, 2005. Preprint
ANL/MCS-P1251-0505.

16. John V. Reference value for drag and lift of a two-dimensional time dependent �ow around cylinder.
International Journal for Numerical Methods in Fluids 2004; 44:777–788.

17. Turek S, Sch�afer M. Recent benchmark computations of laminar �ow around a cylinder. Proceedings of 3rd
World Conference in Applied Computational Fluid Mechanics, Freiburg, 1996.

18. Anitescu M, Pahlevani F, Layton W. Implicit for local e�ects and explicit for nonlocal e�ects is unconditionally
stable. Electronic Transactions of Numerical Analysis 2004; 18:174–187.

19. Weinan E, Liu J-G. Vorticity boundary condition and related issues for �nite di�erence schemes. Journal of
Computational Physics 1996; 124:368–382.

20. Hecht F, Pironneau O, Ohtsuka K. Software FreeFem++. http://www.freefem.org, 2003.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:381–392


